202 research outputs found

    Diffusion Tensor MR Imaging

    Full text link
    This unit reviews the physical principles and methodologies involved in diffusion‐weighted imaging (DWI) and diffusion tensor imaging (DTI) for clinical applications. Diffusion‐sensitive MRI noninvasively provides insight into processes and microscopic cellular structures that alter molecular water mobility. Formalism to extend the Bloch equation to include effects of random translational motion through field gradients is reviewed. Definition of key acquisition parameters is also reviewed along with common methods to calculate and display tissue diffusion properties in a variety of image formats. Characterization of potential directional‐dependence of diffusion (i.e., anisotropy), such as that which exists in white matter, requires DTI. Diffusion tensor formalism and measurement techniques then reduce the diffusion tensor into standard anisotropy quantities that are summarized along with commonly used methods to depict directional information in an image format.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145343/1/cpmib0801.pd

    Linear motion correction in three dimensions applied to dynamic gadolinium enhanced breast imaging

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134776/1/mp8576.pd

    Brain connectivity Patterns Dissociate action of specific Acupressure Treatments in Fatigued Breast cancer survivors

    Get PDF
    Funding This work was supported by grants R01 CA151445 and 2UL1 TR000433-06 from the National Institutes of Health. The funding source had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. We thank the expert assistance by Dr. Bradley Foerster in acquisition of 1H-MRS and fMRI data.Peer reviewedPublisher PD

    Improving Cerebral Cortical Magnetic Resonance Imaging Using a Readily Available Surface Coil

    Full text link
    Subtle structural deformities of the cerebral cortex have been shown to be the cause of seizures in patients with refractory epilepsy. Brain imaging using high-resolution focused protocols with standard head coils may not provide sufficient image quality needed for evaluating subtle cortical abnormalities. The authors describe the use of a readily available shoulder coil placed over a specific area of the brain that has been clinically determined to enhance the signal to noise and resolution of the cortical surface. Delineating the cortical surface using a shoulder coil can help to detect subtle areas of cortical thickening, blurring of the gray-white matter junction, or focally abnormal gyral and sulcal patterns.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74666/1/j.1552-6569.2004.tb00243.x.pd

    A unique anisotropic R2 of collagen degeneration (ARCADE) mapping as an efficient alternative to composite relaxation metric (R2ñ R1Ï ) in human knee cartilage study

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148373/1/mrm27621.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148373/2/mrm27621_am.pd

    Contrast-enhanced MR angiography

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42396/1/261-23-5-469_23n5p469.pd

    Diffusion-weighted MR imaging of the liver at 3.0 Tesla using TRacking Only Navigator echo (TRON): A feasibility study

    Full text link
    Purpose: To assess the feasibility of TRacking Only Navigator echo (TRON) for diffusion-weighted magnetic resonance imaging (DWI) of the liver at 3.0T. Materials and Methods: Ten volunteers underwent TRON, respiratory triggered, and free breathing DWI of the liver at 3.0 Tesla (T). Scan times were measured. Image sharpness, degree of stair-step and stripe artifacts for the three methods were assessed by two observers. Results: Mean scan times of TRON and respiratory triggered DWI relative to free breathing DWI were 34% and 145% longer respectively. In four of eight comparisons (two observers, two b-values, two slice orientations), TRON DWI image sharpness was significantly better than free breathing DWI, but inferior to respiratory triggered DWI. In two of four comparisons (two observers, two b-values), degree of stair-step artifacts in TRON DWI was significantly lower than in respiratory triggered DWI. Degree of stripe artifacts between the three methods was not significantly different. Conclusion: DWI of the liver at 3.0T using TRON is feasible. Image sharpness in TRON DWI is superior to that in free breathing DWI. Although image sharpness of respiratory triggered DWI is still better, TRON DWI requires less scan time and reduces stair-step artifacts. J. Magn. Reson. Imaging 2009;30:1027–1033. © 2009 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64324/1/21939_ftp.pd

    Primary myelofibrosis evolving to an aplastic appearing marrow

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144664/1/ccr31618.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144664/2/ccr31618_am.pd
    • 

    corecore